3 research outputs found

    Computer-aided diagnosis tool for the detection of cancerous nodules in X-ray images

    Get PDF
    This thesis involves development of a computer-aided diagnosis (CAD) tool for the detection of cancerous nodules in X-ray images. Both cancerous and non-cancerous regions appear with little distinction on an X-ray image. For accurate detection of cancerous nodules, we need to differentiate the cancerous nodules from the non-cancerous. We developed an artificial neural network to differentiate them. Artificial neural networks (ANN) find a large application in the area of medical imaging. They work in a manner rather similar to the brain and have good decision making criteria when trained appropriately. We trained the neural network by the backpropagation algorithm and tested it with different images from a database of thoracic radiographs (chest X-rays) of dogs from the LSU Veterinary Medical Center. If we give X-ray images directly as input to the ANN, it incurs substantial complexity and training time for the network to process the images. A pre-processing stage involving some image enhancement techniques helps to solve the problem to a certain extent. The CAD tool developed in this thesis works in two stages. We pre-process the digitized images (by contrast enhancement, thresholding, filtering, and blob analysis) obtained after scanning the X-rays and then separate the suspected nodule areas (SNA) from the image by a segmentation process. We then input enhanced SNAs to the backpropagation-trained ANN. When given these enhanced SNAs, the neural network recognition accuracy, compared to unprocessed images as inputs, improved from 70% to 83.33%

    A comparison of image processing techniques for bird recognition

    No full text
    Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities
    corecore